Numerical Investigations on Heat Transfer Characteristics of Single Particle and Hybrid Nanofluids in Uniformly Heated Tube

نویسندگان

چکیده

In the present study, heat transfer characteristics, namely, coefficient, Nusselt number, pressure drop, friction factor and performance evaluation criteria are evaluated for water, Al2O3 Al2O3/Cu nanofluids. The effects of Reynolds volume fraction composition nanoparticles in hybrid nanofluid analyzed all characteristics. single particle nanofluids flowing through a plain straight tube which is symmetrically heated under uniform flux condition. numerical model validated number within 7.66% error 8.83% with corresponding experimental results from previous literature study. thermophysical properties superior to water. drop show increasing trend increase fraction. shows parabolic trend, small variations change number. However, both have increased 2.0% equal (50/50%) presented characteristics among working fluids. Further, enhanced by changing nanoparticle compositions. Al2O3, (50/50%), (75/25%) (25/75%) as 1.08, 1.11, 1.10 1.12, respectively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsteady Numerical Investigations of Flow and Heat Transfer Characteristics of Nanofluids in a Confined Jet Using Two-Phase Mixture Model

The development of high-performance thermal systems has increased interest in heat transfer enhancement techniques. The application of additives to heat transfer liquids is one of the noticeable effort to enhance heat transfer. In this paper two-dimensional unsteady incompressible nanofluid flow in a confined jet at the laminar flow regime is numerically investigated. The Mixture model is consi...

متن کامل

A numerical investigation of γ-Al2O3-water nanofluids heat transfer and pressure drop in a shell and tube heat exchanger

The effect of γ-Al2O3 nanoparticles on heat transfer rate, baffle spacing and pressure drop in the shell side of small shell and tube heat exchangers was investigated numerically under turbulent regime. γ-Al2O3-water nanofluids and pure water were used in the shell side and the tube side of heat exchangers, respectively. Since the properties of γ-Al2O3-water nanofluids were variable, they were ...

متن کامل

Numerical study of flow and heat transfer characteristics of CuO/H2O nanofluid within a mini tube

Nanofluids are new heat transfer fluids, which improve thermal performance while reducing the size of systems. In this study, the numerical domain as a three-dimensional copper mini tube was simulated to study the characteristics of flow and heat transfer of CuO/H2O nanofluid, flowed horizontally within it. The selected model for this study was a two-phase mixture model. The results ...

متن کامل

Heat Transfer and Carryover in the Dryout of a Heated Vertical Tube

This work concerns dryout experiments in which a tube, initially containing water, filled up or partially filled and at 1,2 or 3 atmosphere pressures, is heated. The initial water column experience three thermal regions. The first region, called the first period, involves heating of the tube until saturation conditions are obtained in the water. Boiling of the water in the tube causes swelling ...

متن کامل

a numerical investigation of γ-al2o3-water nanofluids heat transfer and pressure drop in a shell and tube heat exchanger

the effect of γ-al2o3 nanoparticles on heat transfer rate, baffle spacing and pressure drop in the shell side of small shell and tube heat exchangers was investigated numerically under turbulent regime. γ-al2o3-water nanofluids and pure water were used in the shell side and the tube side of heat exchangers, respectively. since the properties of γ-al2o3-water nanofluids were variable, they were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2021

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym13050876